"Bepatient,fortheworldisbroadandwide." Section1:OftheNatureofFlatland. ImagineavastsheetofpaperonwhichstraightLines,Triangles,Squares,Pentagons,Hexagons,andotherfigures,insteadofremainingfixedintheirplaces,movefreelyabout,onorinthesurface,butwithoutthepowerofrisingaboveorsinkingbelowit,verymuchlikeshadows—onlyhardwithluminousedges—andyouwillthenhaveaprettycorrectnotionofmycountryandcountrymen. Alas,afewyearsago,Ishouldhavesaid"myuniverse":butnowmymindhasbeenopenedtohigherviewsofthings. PlaceapennyonthemiddleofoneofyourtablesinSpace;andleaningoverit,lookdownuponit.Itwillappearacircle. ThesamethingwouldhappenifyouweretotreatinthesamewayaTriangle,oraSquare,oranyotherfigurecutoutfrompasteboard. Assoonasyoulookatitwithyoureyeon theedgeofthetable,youwillfindthatitceasestoappeartoyouasafigure,andthatitbecomesinappearanceastraightline. TakeforexampleanequilateralTriangle—whorepresentswithusaTradesmanoftherespectableclass. Figure1representstheTradesmanasyouwouldseehimwhileyouwerebendingoverhimfromabove;figures2and3representtheTradesman,asyouwouldseehimifyoureyewereclosetothelevel,orallbutonthelevelofthetable;andifyoureyewerequiteonthelevelofthetable(andthatishowweseehiminFlatland)youwouldseenothingbutastraightline. Well,thatisjustwhatweseewhenoneofourtriangularorotheracquaintancescomestowardsusinFlatland. Asthereisneithersunwithus,noranylightofsuchakindastomakeshadows,wehavenoneofthehelpstothesightthatyouhaveinSpaceland. Ifourfriendcomesclosertousweseehislinebecomeslarger;ifheleavesusitbecomessmaller;butstillhelookslikeastraightline;beheaTriangle,Square,Pentagon,Hexagon,Circle,whatyouwill—astraightLinehelooksandnothingelse. Youmayperhapsaskhowunderthesedisadvantagescircumstancesweareabletodistinguishourfriendsfromoneanother:buttheanswertothisverynaturalquestionwillbemorefitlyandeasilygivenwhenIcometodescribetheinhabitantsofFlatland. Forthepresentletmedeferthissubject,andsayawordortwoabouttheclimateandhousesinourcountry.